pm— Systems Integration Specialists Company, Inc.

6605 19'2 Mile Road
SIS cc Sterling Heights, Ml 48314-1408 USA
Phone: +810-254-0020 Fax: +810-254-0053
E-Mail: info@sisconet.com, URL: http://www.sisconet.com

MMS and ASN.1
Encodings

Simple Examples and Explanations
on How to Crack an MMS PDU

Created by: Herbert Falk (SISCO) and Dr. Martin Burns (Hypertek)

Date: 06/07/96
Revised: 05/30/97
08/29/01

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. This document may
only be used and copied in its entirety for non-commercial educational use.
Contact SISCO for information on any other usage of this document. Use of this
document is an explicit acceptance of these restrictions.

MMS and ASN.1 Simple Samples and Explanations

Table of Contents
| INTRODUCTION 1|
|ABSTRACT SYNTAX NOTATION 1 (ASN.1) 1|
[TAGS 2|
[LENGTH 3|
| DATA 4|
[ASN.1 example encodings 4|
[MMS 5|
| Understanding the Protocol Notation 5|
| OPTIONAL and DEFAULT Elements 6|
| MMS Variable Data Values and ASN.1 7|
[MMS PDU’s 9|
| ConfirmedService PDU’s 10|
| Data Access Errors 12|
[MMS EXAMPLES 13|
| Context Management 14
Initiate - 14
| Initiate-Response 15
| Conclude- 16
[Conclude-Response 16
[VMD Management 17
| Identify- 17
[Identify-Response 18
| Variable Management 19
Read- 19
| Read-ResponsePDU 21
[PRACTICE PDUS 24
| CHEAT SHEETS 25|

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

MMS and ASN.1 Simple Samples and Explanations

Introduction

During my work with the electrical utility industry, several educational issues in regards
to MMS have often been discussed. The issues of understanding the ISO/IEC-9506
standard have always been a core problem for the non-initiated.

For the MMS non-initiated, the MMS standard is a problem since it infers the use of other
standards (e.g., Presentation, ASN.1, and ACSE). Besides not being a self-contained
standard, the division of protocol specification and encoding represents a different
philosophy from many of the previous SCADA protocols. However, given all the
required documentation, it still takes considerable time to understand ASN.1 and MMS.

This document is intended to help boot-strap individuals in the educational process. In
order to achieve an initial understanding of the encoding of MMS, I have intentionally
restricted the included examples of commonly used semantics and protocols.

Abstract Syntax Notation 1 (ASN.1)

The purpose of ASN.1 is to provide encoding and decoding specifications for protocol
syntax that is to be sent over a network. The intent of this standard (ISO/IEC 8824 and
8825) is to have a neutral representation of fields as they are exchanged over a
communication media.

Therefore, ASN.1 accounts for the problems typically associated in exchanging data
between Intel, Motorola, VAX, and RISC platforms. This includes accounting for the
Big/Little Endian problems and byte representation issues.

In order to accomplish this, ASN.1 concretely specifies the sequence and order of bits as
they are to be transmitted on the wire. Additionally, the standard defines key words that
are to be used within MMS, and other standards, to aid in the specification of the
semantics and encodings. For example, ASN.1 always typically specifies that the most
significant bit of the most significant byte is encoded to be transferred first.

The key words, found in MMS, are all capitalized. For example:

SEQUENCE SEQUENCE OF
IMPLICIT INTEGER
BOOLEAN NULL

Also, ASN.1 encoded values always have the format of TAG, LENGTH, followed by
VALUE. As with any rule, there is typically an exception. In the case of ASN.1, it is
NULL, which only has a TAG and always has a length of 0 and no data (what better way
to represent a NULL value). The combination of a TAG, LENGTH, and VALUE (TLV)
is termed a “production”.

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 1

MMS and ASN.1 Simple Samples and Explanations

A TAG describes the ASN.1 kind of information represented by the production.

A LENGTH describes how many bytes (OCTETS in ASN.1 speak) that follow in
the DATA part of the production.

A VALUE is the actual content being carried by the production.

TAGS
The TAG byte has several sub-fields designated. These are:

Bits 7,6 Type of tag
Bit 5 Primitive or Constructed Flag
Bit 4-0 Tag value

For MMS, the values of bits 7-5 that are typically used are:

Bits 7,6 Bit 5 Description, key words
00 0 Description: Universal Tag, Primitive

Example keywords: INTEGER, BITSTRING, BOOLEAN
00 1 Description: Universal Tag, Constructed

Example keyword: SEQUENCE, SEQUENCE OF
10 0 Description: Context Specific, Primitive

Example Keyword: IMPLICIT
10 1 Description: Context Specific, Constructed

Example Keywords: IMPLICIT SEQUENCE

IMPLICIT SEQUENCE OF

The other commonly encountered keyword is CHOICE, which has no encoding.
The actual tag values are assigned in ASN.1 (for primitive Universal tags) or via the
MMS standard through the notation using '[]'. The integer value within the '[]' denotes the

actual value of the tag to be used.

The Universal tag values, defined within the ASN.1 standard are:

Keyword Tag Value
(hex)

BOOLEAN 01
INTEGER 02
BITSTRING 03
OCTETSTRING 04
NULL 05
OBJECT IDENTIFIER 06

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 2

MMS and ASN.1 Simple Samples and Explanations

Keyword Tag Value
(hex)
SEQUENCE 10
IASSTRING 16
UTCTIME 17
GENERALIZETIME 18
VISIBLESTRING 1A

The use of IMPLICIT is often misunderstood, but it is used to save bytes that are encoded
and transmitted over the wire. The following example illustrates this fact:

Example: [1] INTEGER
This would encode as Al xx 02 yy where xx and yy are lengths

In this case the [1] represents an EXPLICIT TAG (IMPLICIT SEQUENCE) and
therefore is encoded as Al.

VS.
[1] IMPLICIT INTEGER ::= 81 xx

From a decoding perspective, the two methods convey the same information but
IMPLICIT requires two(2) less bytes.

The Tag value (bits 4-0) is extensible so that tag values greater than 31 can be encoded.
This is accomplished by reserving 0x1f (bits 4-0), in the first tag byte, to indicate that the
tag field is being extended. In general, if Ox1f is encountered in the first tag byte, the next
byte is the actual tag value.

LENGTH
The LENGTH has a simple and extended form. If the length of the DATA is less than

128 bytes, the LENGTH is that number of bytes. If the length of the DATA is greater than
or equal to 128 bytes, the LENGTH is encoded as several bytes. The first indicating how
many bytes encode the actual length, and with bit 7 set. The subsequent length bytes
contain the actual length.
Example: OCTETSTRING which is 127 bytes in length would have a TLV of:

04 7f <127 bytes of value>
Example: OCTETSTRING which is 256 bytes in length would have a TLV of:

04 82 01 00 <256 bytes of value>

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 3

MMS and ASN.1 Simple Samples and Explanations

DATA

The DATA portion of the production contains the actual information to be exchanged.
The content is described by the TAG, discussed above, and can consist of simple types
and constructed types. The constructed types -- sets and sequences-- will be comprised of
separate productions representing the individual elements contained (nested) in the
DATA part of the constructed production.

ASN.1 specifies the encoded form of the value for a given ASN.1 TAG.

ASN.1 example encodings
The following are ASN.1 encoding examples:
Example: INTEGER

This would be encoded as a primitive Universal tag. Therefore, the tag value is
found in the ASN.1 specification and is 02 (hex).

Example: [5] IMPLICIT INTEGER.

Since the keyword IMPLICIT is displayed, the actual tag value for the
INTEGER will be encoded as a primitive context-specific tag. The value of the
tag to be used will be 5. Therefore, the encoded tag value would be 85 (hex).

Example: BIT STRING

The TAG/Length/Value (TLV) format of ASN.1 is the rule. However, the
VALUE portion is constrained to values as defined within the ASN.1 standard.
Thus, the value of a BIT STRING is not only the value of the bits to be
conveyed, but also the number of unused bits. Therefore, a BIT STRING that is
11 bits long would have the following encoding:

03 (tag) 03 (length of value in bytes) 05 (unused bits) ff 00 (bits).

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 4

MMS and ASN.1 Simple Samples and Explanations

MMS

Understanding the Protocol Notation

The MMS protocol specification makes use of several other conventions. These
conventions are:

1. Keywords which are entirely capitalized are defined in the ASN.1 specification.

2. Keywords which begin with a lower case letter are defined on the same line as the
keyword.

3. Keywords which begin with a capitalized letter and are not entirely capitalized are
defined elsewhere within the MMS specification.

Example: Identify-Request (Confirmed MMS Request)

In order to understand how to encode (ASN.1) an entire Identify Request, several
protocol productions are required. This example shows all of the productions required
in order to construct the request and the sections in the MMS standard (Part 2) where
the entire production can be found.

MMSpdu ::= CHOICE { -- ASN.1
confirmed-RequestPDU [0] IMPLICIT Confirmed-RequestPDU, -- section 7.1
...... }
Confirmed-RequestPDU ::= SEQUENCE { -- ASN.1
invokelD Unsigned32, --
section 7.6.2
ConfirmedServiceRequest -- section 7.5.2
H
Unsigned32 ::= INTEGER with range restrictions -- ASN.1
ConfirmedServiceRequest ::= CHOICE { -- ASN.1
[2] IMPLICIT Identify-Request, -- section 9.5
...... }

Identify-Request ::= NULL

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 5

MMS and ASN.1 Simple Samples and Explanations

The various scattered productions result in the following concrete ASN.1:

Tag value (hex)
Identify-RequestPDU ::= [0] IMPLICIT SEQUENCE { A0
INTEGER, 02
[2] IMPLICIT NULL 82

}

The fact that the protocol productions are not in one section can make MMS difficult to
understand, but the entire protocol always decomposes into ASN.1 defined tags.

OPTIONAL and DEFAULT Elements
When reviewing the MMS specification, the use of the OPTIONAL and DEFAULT
keywords have significance.

The OPTIONAL indicates that the specified field may or may not be encoded.
Additionally, it indicates that no value can be associated with the fact that the optional
field is absent.

Example:

DefineNamedVariable-Request ::= SEQUENCE {

variableName [0] ObjectName,

address [1] Address,

typeSpecification [2] TypeSpecification OPTIONAL
b

In this example, the request may include a typeSpecification field. However, the
MMS protocol does not require this field in order to define a NamedVariable.
Therefore, the field is OPTIONAL.

The use of DEFAULT indicates that the specified field may or may not be encoded.
However, unlike OPTIONAL, the absence of the encoded field has significance and
therefore the protocol specifies the associated value that is inferred when the field is not

present.

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 6

MMS and ASN.1 Simple Samples and Explanations

Example:

GetNameList-Response ::= SEQUENCE {
listOfldentifier[0] IMPLICIT SEQUENCE OF Identifier,
moreFollows [1] IMPLICIT BOOLEAN DEFAULT TRUE

}

In this example, the request may include a moreFollows field. However, the
MMS protocol does not require this field in order to return a GetNameList-
Response. If the field is not present, the receiving client can assume that all of
the names have not been transferred (moreFollows=TRUE).

MMS Variable Data Values and ASN.1
MMS identified additional requirements (e.g., data precision or range of value

restrictions) for Variable Data Values. This arose from the acknowledgment that ASN.1
does not explicitly differentiate between signed INTEGER values and unsigned
INTEGER values.
Example: Encoding of the INTEGER value of 1 with ASN.1

INTEGER (1) ::=02 01 01

MMS Integer(1) ::= 8501 01

MMS Unsigned Integer(1) ::= 86 01 01

The rationale as to encoding signed/unsigned is to allow applications to convey
acceptable ranges of values.

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 7

MMS and ASN.1 Simple Samples and Explanations

Therefore, MMS has defined its own set (Context Specific) tags to be used to convey its
Variable Data values. The following table shows examples of the MMS data production
and their encodings.

Common MMS Data Value Encoding Examples
Data Type MMS Tag Example Encoding
(hex) Value
array 81 int [2] = {0,1] | 81 06 8501 00 85 01 01
A A A
| | +- 1
| Frommmmee 0
+ array
structure 82 struct { 82068501 00830101
int 0, A A A
bool TRUE | | + TRUE
} | B 0
+ struct
boolean 83 TRUE 83 01 01
bit-string 84 1010 (bin) 84 02 04 A0
integer 85 255 8502 00 ff
-255 85 02 80 ff
unsigned 86 255 86 01 ff
floating-point 87 1.0 87 05 08 3£ 80 00 00
-- [IEEE Format
octet-string 89 01 02 (hex) 89 02 01 02
visible-string 8a "ab" 8a 02 61 62
timeofday 8¢ 1:00:05 804
1:00:05, 8c06............
12/31/96
bed 8d 09 09 09 (hex) 8d 02 03 e7
-- Integer value 999
booleanArray 8e 1010 8e 03 04 a0

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

Page 8

MMS and ASN.1 Simple Samples and Explanations

MMS PDU’s

The following table shows the different types of MMS PDU’s. The first TAG of an
MMS message is one of these values:

ASN.1:

MMSpdu ::= CHOICE

{

confirmed-RequestPDU [0]
confirmed-ResponsePDU [1]
confirmed-ErrorPDU [2]
unconfirmed-PDU [3]
rejectPDU [4]

cancel-RequestPDU [

cancel-ResponsePDU [6
cancel-ErrorPDU [7
initiate-RequestPDU [8
initiate-ResponsePDU [9
initiate-ErrorPDU [1
conclude-RequestPDU [1
conclude-ResponsePDU [1
conclude-ErrorPDU [1

}

IMPLICIT Confirmed-RequestPDU,
IMPLICIT Confirmed-ResponsePDU,
IMPLICIT Confirmed-ErrorPDU,
IMPLICIT Unconfirmed-PDU,
IMPLICIT RejectPDU,

IMPLICIT Cancel-RequestPDU,
IMPLICIT Cancel-ResponsePDU,
IMPLICIT Cancel-ErrorPDU,
IMPLICIT Initiate-RequestPDU,
IMPLICIT Initiate-ResponsePDU,
IMPLICIT Initiate-ErrorPDU,
IMPLICIT Conclude-RequestPDU,
IMPLICIT Conclude-ResponsePDU,
IMPLICIT Conclude-ErrorPDU

MMS PDU TAG
confirmed-RequestPDU a0
confirmed-ResponsePDU al
confirmed-ErrorPDU a2
unconfirmed-PDU a3
rejectPDU a4
cancel-RequestPDU as
cancel-ResponsePDU a6
cancel-ErrorPDU a7
initiate-RequestPDU a8
initiate-ResponsePDU a9
initiate-ErrorPDU aa
conclude-RequestPDU ab
conclude-ResponsePDU ac
conclude-ErrorPDU ad

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

Page 9

MMS and ASN.1 Simple Samples and Explanations

ConfirmedService PDU’s

Confirmed Service MMS PDUs all have the same general form:

Request/Response TAG A0/A1 followed by length field
InvokelD 02 len ID

ConfirmedService Tag See table below followed by length
Service Specific See MMS standard.

The following represents the TAGs and their encodings for MMS confirmed services.

MMS Confirmed Services TAG Table
TAG Encoded TAG
MMS Service (dec) Request | Response

status 0 80 a0
getNameList 1 al al
identify 2 82 a2
rename 3 a3 83
read 4 a4 a4
write 5 as as
getVariableAccessAttributes 6 a6 a6
defineNamedVariable 7 a7 87
defineScattered Access 8 a8 88
getScattered AccessAttributes 9 a9 a9
deleteVariableAccess 10 aa aa
defineNamedVariableList 11 ab 8b
getNamedVariableListAttributes 12 ac ac
deleteNamedVariableList 13 ad ad
defineNamedType 14 ae 8e
getNamedTypeAttributes 15 af af
deleteNamedType 16 b0 b0
input 17 bl 91
output 18 b2 92
takeControl 19 b3 b3
relinquishControl 20 b4 94
defineSemaphore 21 b5 95
deleteSemaphore 22 b6 96
reportSemaphoreStatus 23 b7 b7
reportPoolSemaphoreStatus 24 b8 b8
reportSemaphoreEntryStatus 25 b9 b9
initiateDownloadSequence 26 ba 9a
downloadSegment 27 9b bb
terminateDownloadSequence 28 be 9c
initiateUploadSequence 29 9d bd

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 10

MMS and ASN.1 Simple Samples and Explanations

MMS Confirmed Services TAG Table
TAG Encoded TAG
MMS Service (dec) Request | Response

uploadSegment 30 9e be

terminateUploadSequence 31 of If of If
DomainDownload 32 bf 20 9120
DomainUpload 33 bf21 921
loadDomainContent 34 bf 22 9f 22
store(DomainContent 35 bf 23 9123
deleteDomain 36 9f 24 9f 24
getDomainAttributes 37 9f25 bf 25
createProgramInvocation 38 bf 26 9f26
deleteProgramInvocation 39 9t 27 927
start 40 bf 28 9f 28
stop 41 bf 29 929
resume 42 bf 2a 9f2a
reset 43 bf 2b 9f 2b
kill 44 bf 2¢ 9f 2¢
getProgramInvocationAttributes 45 9f2d bf 2d
obtainFile 46 bf 2¢ 9f 2e
defineEventCondition 47 bf 2f of 2f
deleteEventCondition 48 bf 30 9f 30
getEventConditionAttributes 49 bf 31 bf31
reportEventConditionStatus 50 bf 32 bf 32
alterEventConditionMonitoring 51 bf 33 9133
triggerEvent 52 bf 34 9f 34
defineEventAction 53 bf 35 9f 35
deleteEventAction 54 bf 36 9t 36
getEventActionAttributes 55 bf 37 bf 37
reportEventActionStatus 56 bf 38 9f 38
defineEventEnrollment 57 bf 39 9t 39
deleteEventEnrollment 58 bf 3a 9f 3a
alterEventEnrollment 59 bf 3b bf 3b
reportEventEnrollmentStatus 60 bf 3c bf 3c
getEventEnrollmentAttributes 61 bf 3d bf 3d
acknowledgeEventNotification 62 bf 3e 9f 3e
getAlarmSummary 63 bf 3f bf 3f
getAlarmEnrollmentSummary 64 bf 40 bf 40
readJournal 65 bf41 bf41
writeJournal 66 bf 42 942
initializeJournal 67 bf 43 9143
reportJournalStatus 68 bf 44 bf44
createJournal 69 bf 45 9t 45
deleteJournal 70 bf 46 9t 46
getCapabilityList 71 bf 47 bf 47
fileOpen 72 bf 48 bf 48
fileRead 73 9f49 bf 49
fileClose 74 9f 4a 9f 4a

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 11

MMS and ASN.1 Simple Samples and Explanations

MMS Confirmed Services TAG Table
TAG Encoded TAG
MMS Service (dec) Request | Response
fileRename 75 bf 4b 9f 4b
fileDelete 76 bf 4c 9f 4c¢
fileDirectory 77 bf 4d bf 4d

Data Access Errors

When a Read or Write of an MMS message fails, the response contains a Data Access

Error Code from the following table:

Data Access Errors

Error

object-invalidated

hardware-fault

temporarily-unavailable

object-access-denied

object-undefined

invalid-address

type-unsupported

type-inconsistent

object-attribute-inconsistent

object-access-unsupported

object-non-existent

OOl NN B lWIN|(—|O

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

Page 12

MMS and ASN.1 Simple Samples and Explanations

MMS Examples

The following examples are shown in a format that is neither entirely ASN.1 or MMS. In
general, the examples show a typical MMSPdu. The MMS protocol specification
(showing field names and IMPLICITS) along with the actual bytes used to encode the
protocol syntax follows. The extracted field values are then shown.

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 13

MMS and ASN.1 Simple Samples and Explanations

Context Management

Initiate -
MMSPdu Received ::=
A825800208008101 05820105830105A4
16 8001 01 81 03 05 F8 00 82 0C 03 EE 19 00 18
00 02 00 00 00 FD 18
initiate-PDU ::= TAG/Length VALUE
{
[8] IMPLICIT SEQUENCE A8 25
{
[0] IMPLICIT localDetailCalling, 80 02 800
[1] IMPLICIT proposedMaxServOutstandingCalling, 8101 05
[2] IMPLICIT proposedMaxServOutstandingCalled, 82 01 05
[3] IMPLICIT proposedDataStructureNestingLevel, 83 01 05
[4] IMPLICIT SEQUENCE A4 16
{
[0] IMPLICIT proposedVersionNumber, 8001 01
[1] IMPLICIT proposedParameterCBB, 8103 05 {8 00
[2] IMPLICIT servicesSupportedCalling 82 0c 03 ee 1900 18
00 02 00 00 00
FD 18
H
H
H
where : localDetailCalling (maxProposedMMSPduSize) ::= 2048 bytes
proposedMaxServOutstandingCalling ::= 5
proposedMaxServOutstandingCalled ::= 5
proposedDataStructureNestingLevel (NEST) ::= 5
proposedVersionNumber ::= 1 (MMS IS)
proposedParameterCBB ::=

note: 81 03 05 £8 00 indicates BITSTRING of length 3 bytes, the 05 indicates number of unused bits

strl (bit 0 / array support / MSB of F8) supported
str2 (bit 1 / structure support) supported
vnam (bit 2 / named variable support) supported
valt (bit 3 /alternate access support) supported
vadr (bit 4/ unnamed variable support) supported
viscera (bit 5/ scattered access support) not-supported
toy (bit 6/ third party operations support) not-supported
villas (bit 7/ named variable list support) not-supported
real (bit 8 / ASN.1 real data type support) not-supported
ache (bit 9/ acknowledge event condition

support) not-supported
chi (bit 10 / condition event support) not-supported

servicesSupportedCalling ::= see ISO/IEC-9506

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 14

MMS and ASN.1 Simple Samples and Explanations

Initiate-Response

MMSPdu Received ::=

A925800208008101 05820105830105A4
16 80 01 01 81 03 05 F8 00 82 0C 03 EE 19 00 18

00 02 00 00 00 FD 18

initiate-ResponsePDU ::=
{
[9] IMPLICIT SEQUENCE
{
[0] IMPLICIT localDetailCalled,
[1] IMPLICIT negotiatedMaxServOutstandingCalling,
[2] IMPLICIT negotiatedMaxServOutstandingCalled,
[3] IMPLICIT negotiatedDataStructureNestingLevel,
[4] IMPLICIT SEQUENCE
{
[0] IMPLICIT negotiatedVersionNumber,
[1] IMPLICIT negotiatedParameterCBB,
[2] IMPLICIT servicesSupportedCalled

H
H
H

where : localDetailCalled (maxProposedMMSPduSize) ::=
negotiatedMaxServOutstandingCalling ::=
negotiatedMaxServOutstandingCalled ::=
negotiatedDataStructureNestingLevel (NEST) ::=
negotiatedVersionNumber ::=
negotiatedParameterCBB ::=

TAG/Length VALUE

A9 25

80 02 08 00

8101 05

8201 05

83 01 05

A4 16

80 01 01

8103 05 8 00

82 Oc 03 ec 190018
00 02 00 00 00
FD 18

2048 bytes

5

5

5

1 (MMS IS)

note: 81 03 05 £8 00 indicates BITSTRING of length 3 bytes, the 05 indicates number of unused bits

strl (bit 0 / array support / MSB of F8)

str2 (bit 1 / structure support)

vnam (bit 2 / named variable support)

valt (bit 3 /alternate access support)

vadr (bit 4/ unnamed variable support)

vsca (bit 5/ scattered access support)

tpy (bit 6/ third party operations support)

vlis (bit 7/ named variable list support)

real (bit 8 / ASN.1 real data type support)

akec (bit 9/ acknowledge event condition
support)

cei (bit 10 / condition event support)

servicesSupportedCalling ::= see ISO/IEC-9506

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

supported
supported
supported
supported
supported
not-supported
not-supported
not-supported
not-supported

not-supported
not-supported

Page 15

MMS and ASN.1 Simple Samples and Explanations

Conclude-
MMSPdu Received ::=

&B 00

Conclude-PDU::=

{
[11] IMPLICIT NULL &B 00

}

Conclude-Response
MMSPdu Received ::=

8C 00
Conclude-ResponsePDU::=

{
[12] IMPLICIT NULL 8C 00

}

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 16

MMS and ASN.1 Simple Samples and Explanations

VMD Management

Identify-

MMSPdu Received ::=

A0 050201018200
TAG/Length Value

Identify-PDU ::=

{
[0] IMPLICIT SEQUENCE A0 05
{
invokelD, 02 01 01
82 00

[2] IMPLICIT NULL

H
H

where: invokelD ::= 01

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 17

MMS and ASN.1 Simple Samples and Explanations

Identify-Response

MMSPdu Received ::=

A12A 020101 A22580 0B 5349 5343 4F 2C20
49 6E 63 2E 81 10 41 58 53 34 2D 4D 4D 53 2D 31
33322D 3031388204 32 2E 3030

Identify-ResponsePDU ::= TAG/Length Value
{
[1] IMPLICIT SEQUENCE Al 2A
{
invokelD, 02 01 01
[2] IMPLICIT SEQUENCE A2 25
{
[0] IMPLICIT vendorName, 80 0B 5349 53 43 4F
2C 20 49 6E 63
2E
[1] IMPLICIT modelName, 8110 415853342D
4D 4D 53 2D 31
33322D 3031
38
[2] IMPLICIT revision 82 04 322E 3030
H
H
H
where: invokelD::= 01

note: matching of response to is done by matching invokelD
with response invokelD.

vendorName::= "SISCO, Inc"
modelName::= "AXS4-MMS-132-018"
revision::= "2.00"

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

Page 18

MMS and ASN.1 Simple Samples and Explanations

Variable Management

Read-
MMSPdu Received ::=
A0 1E 0201 0OA A419A1 17A0153013 A011 80
OF 66 65 65 64 6572 31 5F 33 5F 70 68 61 73 65
Read-PDU ::= TAG/Length Value
{
[0] IMPLICIT SEQUENCE A0 1E
{
invokelD, 02 01
[4] IMPLICIT SEQUENCE A419
[I]EXPLICIT SEQUENCE Al 17
[0] IMPLICIT SEQUENCE OF SEQUENCE 3013
[O]EXPLICIT SEQUENCE A0 11
{
[0] IMPLICIT Identifier 80 OF

where: invokelD::=
Identifier (name of variable to read)

0A
"feederl 3 phase"

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

0A

66 65 65 64 6572 31 5f
33570 68 61 73 65

Page 19

MMS and ASN.1 Simple Samples and Explanations

The following is the same PDU using PER:

Read-PDU ::= TAG/Length Value
{
[0] IMPLICIT SEQUENCE 00
{
0 - Option Bitmap

invokelD,
[4] IMPLICIT SEQUENCE

EXPLICIT SEQUENCE
(1] ¢

{
[0] IMPLICIT SEQUENCE OF SEQUENCE

ListOfModifier not present

01 0A —length 1
4
0 - Option Bitmap

specificationResult not present

0
[O]EXPLICIT SEQUENCE 0
{
[0] IMPLICIT Identifier 03 OF 66 65 65 64 6572 31 5f
33 5f70 68 61 73 65
§
§
H
§
H
§
§
where: invokelD::= 0A
Identifier (name of variable to read) "feederl 3 phase"

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

Page 20

MMS and ASN.1 Simple Samples and Explanations

Read-ResponsePDU

The Read-Response, used in this example, is a reply to a Read-PDU for the Named Variable
"feederl 3 phase". The actual data of the variable is a structure consisting of two(2) INTEGER values. In
'c' notation:

typedef struct var_def

{

nt a;
int b;

} VAR _DEF;

VAR _DEF feederl 3 phase;

In order to make the decoded response more legible, the MMS Data Production will be shown in advance of
the actual example:

Data ::= CHOICE {
[1] IMPLICIT SEQUENCE OF, -- arrayed data
[2] IMPLICIT SEQUENCE OF, -- structured data
[3] IMPLICIT BOOLEAN,
[4] IMPLICIT BIT STRING,
[5] IMPLICIT INTEGER, -- signed int
[6] IMPLICIT INTEGER, -- unsigned int
[7] IMPLICIT FloatingPoint,
[9] IMPLICIT OCTET STRING,
[10] IMPLICIT VisibleString,
[11] IMPLICIT GeneralizedTime,
[12] IMPLICIT TimeofDay,

[13] IMPLICIT INTEGER, --BCD
[14] IMPLICIT BIT STRING, -- boolean array
[15] IMPLICIT OBJECT IDENTIFIER

H

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 21

MMS and ASN.1 Simple Samples and Explanations

The encoded structure of the encoded data can be determined via VAR DEEF.

VAR _DEF::=
struct {
int a;
int b;
§
MMSPdu Received ::=

TAG
A2
85

85

A1 0F 02 01 OA A4 0A A1 08 A2 068501008501

-- start of accessResult(s)

00
Read-ResponsePDU::= TAG/Length Value
{
[1] SEQUENCE Al OF
{
invokelD, 02 01 0A
[4] SEQUENCE A4 0A
{
[1]1 IMPLICIT SEQUENCE OF A1 08
{
Data of feederl 3 phase
struct { A2 06
int a; 8501 00
int b; 8501 00
H
§
§
§
H
where: invokelD::= 0A
value of a::= 00
value of b::= 00

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

Page 22

MMS and ASN.1 Simple Samples and Explanations

The following is the same PDU encoded in PER.

Read-ResponsePDU::=
{
[1] SEQUENCE
{
invokelD,
[4] SEQUENCE

{
[1] IMPLICIT SEQUENCE OF
{
Data of feederl 3 phase
struct {
int a;
int b;
§
}
}
}
§
where: invokelD::= 0A
value of a::= 00
value of b::= 00

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

TAG/Length Value

01

01 0A

04

0 - Option Bitmask
AccessSpecification not
present

01 -- start of accessResult(s)

2

51 00

51 00

Page 23

MMS and ASN.1 Simple Samples and Explanations

Practice PDUs

In order to allow the reader to practice cracking the MMS-PDUs, the following traces are being provided.

A0 OE 02 01 0A A1 09 A0 03 8001 00 A1 02 8000

A1 670201 0A A1 62 A0 5D 1A 0B 54 65 6D 70 65
726174757265 1A 0C 54 656D 70 6572 61 74
75726531 1A 076172 726179 5F 35 1A 04 62
6F 6F 6C 1A OF 66 65 65 64 657231 5F 33 5F 70
68 61 73 65 1A 05 66 6C 6F 61 74 1A OF 68 65 72
62 73 5F 74 6573 74 5F 7479 70 65 1A 08 75 6E
73 69 67 6E 65 64 81 01 00

A0 180201 0B A6 13 A0 11 80 OF 66 65 65 64 65
7231 5F 33 5F 70 68 61 73 65

A1340201 0B A6 2F 80 01 00 A1 16 81 14 66 65
65 64 657231 5F 33 5F 70 68 61 73 65 24 41 64
64 72 A2 12 A2 10 A1 OE 3005 A1 03 8501 1030
05A103850110

A0 1E 0201 0CA419A1 17A0153013 A01180
OF 66 65 65 64 657231 5F 33 5F 70 68 61 73 65

A1 OF 02 01 0C A4 0A A1 08 A2 06 8501 01 8501
02

A0260201 0D A521 A0 153013 A0 11 80 OF 66
65 65 64 657231 5F 33 5F 70 68 61 73 65 A0 08
A2 068501008501 17

A1 070201 0D A502 81 00

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 24

MMS and ASN.1 Simple Samples and Explanations

Cheat Sheets

The following tables are repeated from the body of the discussion to use as “cheat sheets”
in reviewing packets on a non-ASN.1/MMS aware communications monitor:

Bits 7,6 Bit 5 Description, key words

00 0 Description: Universal Tag, Primitive

Example keywords: INTEGER, BITSTRING, BOOLEAN

00 1 Description: Universal Tag, Constructed

Example keyword: SEQUENCE, SEQUENCE OF

10 0 Description: Context Specific, Primitive

Example Keyword: IMPLICIT

10 1 Description: Context Specific, Constructed

Example Keywords: IMPLICIT SEQUENCE
IMPLICIT SEQUENCE OF

Keyword Tag Value

(hex)

BOOLEAN 01
INTEGER 02
BITSTRING 03
OCTETSTRING 04
NULL 05
OBJECT IDENTIFIER 06
SEQUENCE 10
IASSTRING 16
UTCTIME 17
GENERALIZETIME 18
VISIBLESTRING 1A

Common MMS Data Value Encoding Examples

Data Type

MMS Tag
(hex)

Example
Value

Encoding

array

81

int [2] = {0,1]

81 06 8501 008501 01

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

Page 25

MMS and ASN.1 Simple Samples and Explanations

Common MMS Data Value Encoding Examples

Data Type MMS Tag Example Encoding
(hex) Value
structure 82 struct { 82068501 00830101
int 0, A A A
bool TRUE o + TRUE
! [— 0
+ struct
boolean 83 TRUE 830101
bit-string 84 1010 (bin) 84 02 04 A0
integer 85 255 8502 00 ff
-255 8502 80 ff
unsigned 86 255 86 01 ff
floating-point 87 1.0 87 05 08 3£ 80 00 00
-- IEEE Format
octet-string 89 01 02 (hex) 89 02 01 02
visible-string 8a "ab" 8a 02 61 62
timeofday 8¢ 1:00:05 8c04........
1:00:05, 806............
12/31/96
bed 8d 09 09 09 (hex) 8d 02 03 e7
-- Integer value 999
booleanArray 8e 1010 8e 03 04 a0
MMS PDU TAG
confirmed-PDU a0
confirmed-ResponsePDU al
confirmed-ErrorPDU a2
unconfirmed-PDU a3
rejectPDU a4
cancel-PDU a5
cancel-ResponsePDU a6
cancel-ErrorPDU a7
initiate-PDU a8
initiate-ResponsePDU a9
initiate-ErrorPDU aa
conclude-PDU ab
conclude-ResponsePDU ac
conclude-ErrorPDU ad

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved.

Page 26

MMS and ASN.1 Simple Samples and Explanations

Data Access Errors Error
object-invalidated
hardware-fault
temporarily-unavailable
object-access-denied
object-undefined
invalid-address
type-unsupported
type-inconsistent
object-attribute-inconsistent
object-access-unsupported
object-non-existent

OO |A[N| N[|W[N|— O

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 27

MMS and ASN.1 Simple Samples and Explanations

MMS Confirmed Services TAG Table
TAG Encoded TAG
MMS Service (dec) Request | Response

status 0 80 a0
getNameList 1 al al
identify 2 82 a2
rename 3 a3 83
read 4 a4 a4
write 5 as as
getVariableAccessAttributes 6 a6 a6
defineNamedVariable 7 a7 87
defineScattered Access 8 a8 88
getScattered AccessAttributes 9 a9 a9
deleteVariableAccess 10 aa aa
defineNamedVariableList 11 ab 8b
getNamedVariableListAttributes 12 ac ac
deleteNamedVariableList 13 ad ad
defineNamedType 14 ae 8e
getNamedTypeAttributes 15 af af
deleteNamedType 16 b0 b0
input 17 bl 91
output 18 b2 92
takeControl 19 b3 b3
relinquishControl 20 b4 94
defineSemaphore 21 b5 95
deleteSemaphore 22 b6 96
reportSemaphoreStatus 23 b7 b7
reportPoolSemaphoreStatus 24 b8 b8
reportSemaphoreEntryStatus 25 b9 b9
initiateDownloadSequence 26 ba 9a
downloadSegment 27 9b bb
terminateDownloadSequence 28 bc 9¢
initiateUploadSequence 29 9d bd
uploadSegment 30 9e be
terminateUploadSequence 31 of If of If
DomainDownload 32 bf 20 9120
DomainUpload 33 bf 21 9121
loadDomainContent 34 bf 22 9f 22
storeDomainContent 35 bf 23 9f 23
deleteDomain 36 9f 24 9f 24
getDomainAttributes 37 9125 bf 25
createProgramInvocation 38 bf 26 9126
deleteProgramInvocation 39 9127 9127
start 40 bf 28 9f 28
stop 41 bf 29 929
resume 42 bf 2a 9f 2a
reset 43 bf 2b 9f 2b

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 28

MMS and ASN.1 Simple Samples and Explanations

MMS Confirmed Services TAG Table
TAG Encoded TAG
MMS Service (dec) Request | Response
kill 44 bf 2¢ 9f 2¢
getProgramInvocationAttributes 45 9f2d bf 2d
obtainFile 46 bf 2e 9f 2e
defineEventCondition 47 bf 2f of 2f
deleteEventCondition 48 bf 30 9130
getEventConditionAttributes 49 bf 31 bf31
reportEventConditionStatus 50 bf 32 bf 32
alterEventConditionMonitoring 51 bf 33 9133
triggerEvent 52 bf 34 9f 34
defineEventAction 53 bf 35 9f 35
deleteEventAction 54 bf 36 9t 36
getEventActionAttributes 55 bf 37 bf 37
reportEventActionStatus 56 bf 38 9f 38
defineEventEnrollment 57 bf 39 9t 39
deleteEventEnrollment 58 bf 3a 9f 3a
alterEventEnrollment 59 bf 3b bf 3b
reportEventEnrollmentStatus 60 bf 3c bf 3c
getEventEnrollmentAttributes 61 bf 3d bf 3d
acknowledgeEventNotification 62 bf 3e 9f 3e
getAlarmSummary 63 bf 3f bf 3f
getAlarmEnrollmentSummary 64 bf 40 bf 40
readJournal 65 bf41 bf41
writeJournal 66 bf 42 942
initializeJournal 67 bf 43 9143
reportJournalStatus 68 bf 44 bf44
createJournal 69 bf 45 9t 45
deleteJournal 70 bf 46 9t 46
getCapabilityList 71 bf 47 bf 47
fileOpen 72 bf 48 bf 48
fileRead 73 9f49 bf 49
fileClose 74 9f 4a 9f 4a
fileRename 75 bf 4b 9f 4b
fileDelete 76 bf 4c 9f4c
fileDirectory 77 bf 4d bf 4d

© Copyright 1996, 1997 SISCO, Inc. All Rights Reserved. Page 29

	Introduction
	Abstract Syntax Notation 1 (ASN.1)
	TAGS
	LENGTH
	DATA
	ASN.1 example encodings

	MMS
	Understanding the Protocol Notation
	OPTIONAL and DEFAULT Elements
	MMS Variable Data Values and ASN.1
	MMS PDU’s
	ConfirmedService PDU’s
	Data Access Errors

	MMS Examples
	Context Management
	VMD Management
	Variable Management

	Practice PDUs
	Cheat Sheets

